If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2+16y+3y=0
We add all the numbers together, and all the variables
16y^2+19y=0
a = 16; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·16·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*16}=\frac{-38}{32} =-1+3/16 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*16}=\frac{0}{32} =0 $
| 12x-5+4x-7=180 | | 4(1+2x)=5x−14 | | 9a+2=4a+3 | | 2x-1=5x-(-5) | | 8(x—7)=35 | | x=8/3-8 | | 16y+16y+3y=0 | | x-2/4=-4 | | 1.5x-0.7=1.7x-6.1 | | -4.9t^2+22.5t+2=0 | | 6.2=j-5.91 | | 7*0.01=x | | y7=91 | | 5.6=1.4y | | d+8/3=4 | | (1/6)n+(1/3)=(2/3)n, | | 7*0.8=x | | 7/2q=14 | | 5n=4*60-120 | | 1x+8=2.4x-28.4 | | x+2(x+10)=9(x+30+5 | | 89+22+x=69 | | 60*0.81=x | | w-36=88 | | 18y=-5 | | 0=-k-2 | | Y-5/2y+y=0 | | 2x+7-15x=7-13x | | 4x+10=45–3x | | x-12/7=4 | | 6c+3=111 | | 4x-75=2x-25 |